Home WP5

Science Teacher Training in an Information Society
Start
Teaching with computer models

USIE

Guide

Introduction
About the workshops
Notes on activities
Section A
Section B
Sections C, D, E and F
Section G
Section H
Section J
Section K

StartContents

Notes on Section B  Learning about the innovation

The main aims of this section are:
  • To learn how to use the dynamic nature of a spreadsheet to explore the effects of changing variables in simple relationships and how these can be represented graphically.
  • To learn how spreadsheets can be used to explore the behaviour of more complex relationships involving power laws and several variables.
  • To learn how a spreadsheet can be used to model situations that evolve over time through iteration.
  • To consider the usefulness of these models in teaching and learning.
Notes on the activities follow:

B1  Thinking qualitatively and quantitatively

An important feature of a spreadsheet is that it is possible to change input values, and to see immediately the effects on the values of the output variables. This is sometimes expressed as providing support to answer ‘what if?’ questions. One way of thinking about the effects of changes is qualitatively – looking at the direction of the changes, or what increase and what decreases. Another way is to think about them quantitatively. In the examples here, the calculations of distance, time and speed are more straightforward than the calculations on electric circuits. For KS3 pupils, being able to work quantitatively with the former is expected, but not with the latter. Pupils are expected however to be able to reason qualitatively about electrical circuits.

B2  Using graphs

In the same way that spreadsheets are able to show immediately the effects of changing input values on output values, they can also be used to show the effects on graphical representations of the output values. For teachers who have had some simple experiences in using spreadsheets this would be a suitable place to start, omitting Activity B1. 

In the examples here, the graphical representations of distance, time, and speed are more challenging than the graphical representation of Ohm’s Law. In the former case, there are three ways in which the same ‘journey’ is represented – in tabular form, as a velocity-time graph and as a distance-time graph. Pupils need to be able to make the links between these multiple representations in order for the pupil to understand the relationships. The Ohm’s Law graph represents a simple linear relationship. The spreadsheet here is useful in that by changing input values, pupils can see the relationship between these values and the slope of the graph. Both of these examples address statements found in KS4 of the National Curriculum.

B3  Beyond linear relationships

Previous activities involved linear relationships. The ‘Force and motion’ and ‘Electricity’ examples here both involve power laws, though the structure of the models are rather different. For teachers who have had experiences in using spreadsheets with graphical representations this would be a suitable place to start, omitting Activities B1 and B2.

In the ‘Forces and motion’ example, the system evolves over time, and the velocity and time are calculated after different time-intervals. This is done directly using formula which relate velocity and distance directly to time. They could also be calculated by an iterative method (see Activity B5). Calculating directly is a more straightforward technique for students to understand, though the advantage of the iterative technique is that it can be used in situations where calculating directly is too difficult. There is a lot of work that can be done here in predicting and interpreting the shape of the graphs as the starting conditions are changed. Particularly challenging is the case of a positive velocity and a negative acceleration (e.g. throwing a ball in the air).

In the ‘Electricity’ example, the calculations of power in the electrical circuits are ‘one-off’ calculations (the system does not evolve over time). What is challenging in these examples (particularly in the case of two lamps), is to predict and interpret the qualitative effects on each of the variables of changing resistance or voltage. 

B4  Dealing with several variables

These examples are very closely related to the examples given in the previous activity (Activity B3). It would therefore be desirable if Activity B3 was completed before this one. This activity could be omitted if desired, or be treated as extension work, before proceeding to Activity B5. The ‘Forces and motion’ examples extend the treatment by considering force and mass as the input variables rather than acceleration. The example with two forces can be effective in bringing out the idea that zero force (balanced forces) does not imply no motion. The ‘Electricity example’ extends the work on power in series circuits (Activity B3) to parallel circuits, but otherwise the issues are the same.

B5  Iteration

This final activity introduces the technique of iteration to build ‘evolutionary models’ to explore phenomena which would be difficult or impossible to represent analytically. The examples chosen are terminal velocity and capacitor discharge. Terminal velocity is included in the KS4 national Curriculum and can be explored qualitatively at this level. However, both of the examples are appropriately dealt with quantitatively at post-16 level, and students could then be expected to be able to understand how the calculations are carried out, or even to construct such models themselves. In Activity J1, case studies of teachers using a spreadsheet to model capacitor discharge are discussed; if it is planned to include activity J1 in the workshop, it would be very helpful to have used the capacitor discharge model in this activity.

<<=   Previous page Introduction to Trainers' Guide Next page   =>>